A Multi-scale, Multi-objective Approach for Using Indicators to Enhance State-level Conservation and Restoration Programs

Bill Jenkins

Maryland Department of Natural Resources Landscape and Watershed Analysis Division

Maryland's Integrated Natural Resource Assessment

Statewide assessment to identify...

- Where are those remaining resources we value as important?
- What stressors currently or potentially impact these valued resources?
- Where should our collective programmatic responses be focused to get the greatest benefits?

Maryland's Integrated Natural Resource Assessment

INRA Analytical Components

- Comparative Watershed Assessment
- ⇒ Green Infrastructure Assessment
- Strategic Forest Lands Assessment

Landscape/Watershed Restoration and Conservation Targeting Tools

Comparative Watershed Assessment

Comparative Watershed Assessment: CWAP

Watershed Approach – Comparative Watershed Assessment: Land Conservation for Nonpoint Source Pollution Reduction

- Maximize effectiveness of land conservation (and subsequent restoration) for watershed management
- Rationale
 - Natural largely intact, impacts of additional land protection minimal
 - Urban largely disturbed, impacts of additional land protection minimal
 - Mixed greatest potential for habitat protection/enhancement and associated water quality improvements

Landscape Approach: Green Infrastructure Assessment Strategic Forest Lands Assessment

Maryland's GreenPrint Program

Green Infrastructure Assessment: Selection of Ecological Components

- Incorporate landscape ecology and conservation biology principles
- Coarse scale analysis
- Strive to include full range of ecosystem elements
- Limited to features with GIS data available statewide

GreenPrint Parcel Evaluation

Acres of Green Infrastructure (GI)

Percent of Parcel in GI

Ecological Score of GI within Parcel

Acres of Protected Land within 1 Mile

Contribution to Protection of Hub or Corridor

Composite Score

Resource Lands Assessment Hub and corridor network

S 1 1 3 Strategic Forest Lands Assessment

Strategic Forests - GIS Modeling Approach- Scale Issues

Ecological Model

EconomicModel

Vulnerability Model

Defining **Economically** Important Forest Lands

Proximity to Mills – Sourcing Areas

SOCIO-ECONOMIC INDICATORS

Role of Forest Products Industry in Local Economy

Parcel Density

Population

Density

Planned Impacts of Growth

Private Land Protection Designations

POLICY INDICATORS

Biophysical Influences

Species Composition

Soil Productivity

Microclimate

Management Constraints

Riparian Features

Steep Slopes

RTE's

Public Land Management Activities

Private Land Protection Activities

Regional Indicators

SFLA Economic Model

MARYLAND'S LAND CONSERVATION PROGRAMS

PROTECTING THE CHESAPEAKE BAY WATERSHED

Robert L. Erhlich, Jr. Governor

Lewis R. Riley
Secretary
Department of Agriculture

C. Ronald Franks
Secretary
Department of Natural Resources

Michael S. Steele Lt. Governor

James "Chip" DiPaula

Secretary

Department of Budget and Management

Audrey Scott
Secretary
Department of Planning

December 2003

Combining Multi-scale Watershed and Landscape Data to Target Implementation Activities

Toolkit Demonstrations

Preferences

Indicator Summaries Integration Methods

Future Scenarios

Region Map

Download Indicators

Weight by Indicators Map for Maryland

<u>Display</u>	_ ⊙ Sta	tic d	or	O Ir	ntera	ctive)				
<u>Display Map with</u>	• Wat	tersl	neds	0	r	O E	MAF	э Не	xes		
<u>Dat</u> .	a for ma	<u>u</u> [Curre	ent D)ata	*					
	0	1	2	3	4	5	6	7	8	9	10
Forest land cover along streams	C	•	C	C	O	C	C	C	C	C	С
Nitrogen in surface water	0	\odot	O	C	O	C	$^{\circ}$	O	O	$^{\circ}$	c
<< E	ack	Construct Map									

Weight by Indicators Map for Maryland

Weighting by Indicators

Riparian Forest Cover by 11Digit HUC

Nitrogen Loadings by 11Digit HUC

Upper Monocacy Watershed/ Catoctin Mountain Region

Green
Infrastructure
Gaps

Upper Monocacy Watershed/ Catoctin Mountain Region

Riparian Buffer
Planting
Opportunities in
Green
Infrastructure
Gaps Within High
Nutrient Load
Watersheds

Upper Monocacy Watershed/ Catoctin Mountain Region Parcels

